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Abstract

A level set technique for interface tracking is presented, both for the continuum surface force formula-
tion and the ghost fluid method approach. A projection method is used to solve incompressible Navier–
Stokes equations that are coupled to a transport equation for the level set function, defined as the algebraic
distance to interface. Results are presented for head-on droplet collisions in coalescence and reflexive
regimes with a 2D axi-symmetric code, and for an off-center droplet collision in a separation regime for
a large impact parameter with 3D code. Simulations provided realistic and various droplet collision behav-
iors and they correspond to experimental observations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many industrial processes involve two or more interacting phases. Among them sprays are a
wide field of research both for experimental studies and for modeling and numerical simulations.
Although it appears more and more difficult to separate modeling and measurement problems, we
are here only concerned with numerical simulations. In recent years numerous studies have been
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devoted to two-phase flow modeling and, in particular, the transport processes of droplets in tur-
bulent flows have been more and more precisely described by numerical simulations. However, it
clearly appears that specific approaches must be developed when it is necessary to describe inter-
face behavior. Numerical simulation studies on droplet collision thus remain a research topic of
high interest for the modeling of droplet size distributions in sprays, both during the atomization
process and droplet transport.

Such numerical studies have been carried out using either ‘‘front tracking’’ methods or ‘‘front
capturing’’ methods. Front tracking methods (Nobari et al., 1996) are based on the Lagrangian
tracking of marker particles that are attached to the interface motion. They appear suitable when
irregularities on the interface curvature are not too large, but they are not well adapted to describ-
ing topological changes of the interface. In particular, droplet coalescence depends on an interac-
tion time parameter which can be of great influence on the coalescence (or rupture) phenomenon.
In order to be more efficient, the method should be coupled with subgrid modeling which can pre-
dict the interaction time parameter accurately. Note, moreover, that large computer resources are
required for 3D studies.

Two main approaches are involved in the ‘‘front capturing’’ method, namely the Volume of
Fluid method (VOF) and the level set method. The VOF method describes the volumetric fraction
of each phase in grid cells. They were developed in the 1980s and have been commonly used for
some years. The main difficulty of the method is that 2D interface reconstruction appears quite
difficult, and 3D reconstruction is numerically prohibitive on 3D domain. A consequence can
be some uncertainties on the interface curvature and thus on the surface tension forces. Neverthe-
less, let us mention that realistic and predictive simulations can be carried out (Rieber and Frohn,
1995; Gueyffier et al., 1999; Gueyffier, 2000). Interface reconstruction can be avoided by assuming
a continuous volumetric fraction throughout the whole computational domain, which means that
an interface thickness is introduced (Benkenida and Magnaudet, 2000). The method is then quite
similar to the level set method in its continuous force formulation.

Osher and Sethian (1988) proposed a level set method which describes the interface with the
zero level curve of a continuous function defined by the algebraic distance to the interface. To de-
scribe the interface discontinuities, two approaches can be used, namely the continuous force for-
mulation (‘‘delta’’ formulation), which assumes that the interface thickness is 2 or 3 grid meshes
wide, and the ghost fluid method (GFM), which has been derived by Fedkiw et al. (1999) to cap-
ture jump condition on the interface. The two approaches are described here and the results are
presented and discussed for the particular case of droplet collisions.

Experimental droplet collision studies (Ashgriz and Poo, 1990; Estrade, 1998) are providing us
with different correlations to decide what happens when droplet collision occurs. The main
parameters are the surface tension coefficient r, liquid viscosity ll, liquid density ql, droplet rela-
tive velocity Uc, the impact parameter I, and the ratio of droplet diameters D. The following non-
dimensional numbers are thus defined by most authors to characterize droplet collisions, namely:
We ¼ qlU
2
cDs

r
; Oh ¼ llffiffiffiffiffiffiffiffiffiffiffiffi

qlrDs

p ; D ¼ Ds

Db

; I ¼ 2b
Ds þ Db

ð1Þ
where We is the Weber number and Oh the Ohnesorge number, and it is assumed that Db is the
bigger droplet diameter and Ds is smaller droplet diameter. The impact parameter I characterizes
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the eccentricity of the collision, and b is defined as the distance from the center of one droplet to
the relative velocity vector placed on the center of the other droplet. Note that the influence of gas
density and gas viscosity (which are not involved in these parameters) on the collision regime has
also been experimentally studied (Qian and Law, 1997).

Classification of collision regimes usually reports that five main types of collisions are observed
as depicted in a (I,We) diagram (Fig. 1):

• coalescence after minor deformation (a),
• bouncing (b),
• coalescence after substantial deformation (c),
• coalescence followed by separation for near head-on collisions (d),
• coalescence followed by separation for off-center collisions (e).

Regime (a) occurs when the droplets� kinetic energy is small compared to surface energy, drop-
lets are not deformed before colliding and coalescence is observed with few deformations.

Regime (b) is more difficult to handle: the droplets� energy is enough to induce surface defor-
mations, but not enough to push out the gas film enclosed between droplet interfaces. The two
interfaces remain separated by a very thin gas film which avoids coalescence and droplet bouncing
occurs. This particular regime has been observed and explained in Jiang et al. (1992) for hydro-
carbon droplets. However, it seems that it has never been observed for water droplets under ambi-
ent pressure and temperature conditions. Note that it has been experimentally proved that the
physical properties of the gas play an important role in this collision regime: for example Qian
and Law (1997) showed that bouncing can occur with water droplets for higher gas density than
usually considered.

In regime (c) the droplets� kinetic energy is enough to push out the gas film trapped between
droplet surfaces and coalescence is observed. The resulting droplet surface starts oscillating,
but no secondary break up occurs.

When the droplets� kinetic energy is increased, regime (d) appears, droplet oscillations are great-
er, and break up is observed. In this regime, various behaviors can be obtained, and the number of
e 

d

c 

b

a 

I 
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Fig. 1. (I,We) diagram for collision regime.
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satellites in the break-up process increases with an increase of the Weber number (Ashgriz and
Poo, 1990).

Finally, a fifth regime is observed for off-center collision. The three first regimes occur both for
head-on collision and off-center collision, and regime (d), also called reflexive separation, occurs
for a low impact parameter. Regime (e) occurs for energetic collision with a high impact para-
meter. Regime (e) differs from regime (d) on the break-up mechanism, which is linked to shear
forces instead of oscillation forces.

The transition between these regimes can be characterized through a criticalWeber numberwhich
depends on the impact parameter as it is observed in Fig. 1, but also on the properties of the gas and
liquid phases. Viscosity, density and surface tension of the liquid phase are involved in the Ohne-
sorge number. Dependency of the critical Weber number with Ohnesorge number for transition
between regime c (coalescence) and regime d (reflexive separation) will be illustrated in our results.

Experimental studies can help us in a better understanding of droplet collision mechanisms.
However, due to the quite large number of parameters involved in the process, it remains of inter-
est to develop predictive numerical methods to describe interface interactions. Moreover, the
method described here is also well designed for spray atomization studies which are still a prom-
ising research goal for numerical simulations.

We first present the level set method and its coupling with incompressible Navier–Stokes equa-
tions. Both ‘‘delta’’ formulation and the ghost fluid method are described. Results are then pre-
sented and compared with experiments for different droplet collision configurations, namely
regime (a), (c), (d), (e). Simulations are carried out with the 2D-axi code for head-on collisions
and the 3D code for off-center collisions.
2. Numerical methods

2.1. Interface tracking

Level set methods are based on the transport of a continuous function / which describes the
interface between two mediums (Sussman et al., 1997; Sethian, 1999). That function is defined
by the algebraic distance between any point of the domain and the interface. The interface is thus
described by the 0 level of the level set function. Solving a convection equation determines the
evolution of the interface in a given velocity field V (Sethian, 1999):
o/
ot

þ V � r/ ¼ 0 ð2Þ
Particular attention must be paid to this transport equation. Some problems may arise when the
level set method is developed: a high velocity gradient can produce wide spreading and stretching
of the level sets, such that / will no longer remains a distance function. A re-distancing algorithm
(Sussman et al., 1997) is then applied to keep / as the algebraic distance to the interface. The algo-
rithm is based on the iterative resolution of the following equation:
od
os

¼ signð/Þð1� jrdjÞ ¼ 0; where dðx; t; sÞs¼0 ¼ /ðx; tÞ ð3Þ
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where s is a fictitious time. We solve Eq. (3) until steady state is reached, thus close to the exact
steady state solution namely either sign(/) = 0, meaning that we are on the droplet interface,
or j$dj = 1 which mathematically defines a distance function. We then replace /(x, t) by
d(x, t,ssteady). In our simulations two or three iterations per physical time step of re-distancing
algorithm are sufficient to ensure that d is a signed distance. The main advantage of the above
algorithm is to provide us with the required property for / without changing its zero level set.

Eqs. (2) and (3) are hyperbolic types. Specific care must be devoted to the discretization meth-
od, as discontinuities are often observed in the results. To avoid singularities in the distance func-
tion field, we thus use a 5th order WENO scheme for convective terms (Jiang and Shu, 1996).
Temporal derivatives are computed with at least a second order Runge–Kutta scheme.

One advantage of the level set method is its ability to represent topological changes both in 2D
or 3D geometry quite naturally. Moreover, geometrical information on the interface, such as
normal vector n or curvature j, are easily obtained through:
n ¼ r/
jr/j ð4Þ

jð/Þ ¼ r � n ð5Þ

It is well known that numerical computation of Eqs. (2) and (3) can generate mass loss in under-
resolved regions. This is the main drawback of level set methods, but to improve mass conserva-
tion two main extensions of the method can be developed, namely the particle level set (Enright
et al., 2002) and a coupling between VOF and level set (Sussman and Puckett, 2000). These exten-
sion have not been carried out here, but we have quantified mass loss in the simulations and
ensured that it was negligible (<1%).

2.2. Projection method

The level set method is coupled with a projection method for the direct numerical simulation of
incompressible Navier–Stokes equations expressed as follows:
oV

ot
þ ðV � rÞVþ rp

qð/Þ ¼
rð2lð/ÞDÞ

qð/Þ ; D ¼ 1

2
ðrVþrVTÞ ð6Þ

r � V ¼ 0 ð7Þ

p is the pressure, q and l are the fluid density and viscosity respectively.

Three main steps are carried out in the projection method:

• estimate velocity V* from velocity at time tn (first order time discretization here assumed for
simplicity):
V� ¼ Vn � dt ðVn � rÞVn �rð2lð/nÞDÞ
qð/nÞ

� �
ð8Þ
• solve the Poisson equation for pressure:
r � rpnþ1

qð/nþ1Þ

 !
¼ r � V�

dt
ð9Þ
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• update divergence free velocities using pressure and intermediate velocity:
Vnþ1 ¼ V� � dt
rpnþ1

qð/nþ1Þ
ð10Þ
In the projection method velocity components are expressed on a staggered grid. Spatial deriv-
atives are estimated with a second order central scheme, but convective terms are also approxi-
mated by fifth order WENO scheme discretization in order to ensure a robust behavior of the
solution. Temporal derivatives are approximated with at least a second order Runge–Kutta
scheme or Adams Bashforth algorithm.

Poisson equation discretization, with a second order central scheme, leads to a linear system;
the system matrix is symmetric and positive definite with five diagonals. Different methods can
be derived to solve that system. According to different authors (Tatebe, 1996), the multigrid meth-
od for preconditioning conjugate gradient methods (MGCG) combines incomplete choleski
conjugate gradient (ICCG) robustness with the multigrid fast convergence rate. We have thus
developed the MGCG method in our code and greatly decreased computational time compared
to the ICCG algorithm.

2.3. Discontinuities

The interface is defined by two different phases and discontinuities must be taken into account
for density, viscosity and pressure. Specific treatment is thus needed to describe the jump condi-
tions numerically. Formally, these conditions are defined by:
kð/Þ ¼ kg þ ðkl � kgÞHð/Þ ð11Þ
where k stands for q or l and H(/) is the Heaviside function centered on the interface.
The pressure jump related to surface tension r and to the interface curvature reads (Tanguy,

2004):
½p� ¼ rjð/Þ þ 2½l� ðru � n;rv � n;rw � nÞ � n ð12Þ
where [Æ] represents a jump in the variable considered.
Two different approaches can be used to represent the above conditions, namely the continuum

surface force (delta formulation) or the ghost fluid method.

2.3.1. Continuum surface force
In the continuum surface force (CSF) approach, the Heaviside function is smoothed on two or

three nodes on each side of the interface, as follows:
H eð/Þ ¼

0 if / < e
1

2
1þ /

e
þ 1

p
sin

p/
e

� �� �
if j/j 6 e

1 if / > e

8>><
>>: ð13Þ
where e = 1.5dx.
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In order to take into account surface tension force, an additional term is involved in Navier–
Stokes equations (Eq. (8)), which is written (Smereka, 1996):
�rjð/Þdeð/Þr/ ð14Þ
where de is the derivative of He(/).
That approach has been proved to be robust and leads to interesting results. But smoothing the

Heaviside function introduces an interface thickness which depends on the mesh size, and thus an
uncertainty on the exact location of the interface.

2.3.2. Ghost fluid method
To overcome that smoothing, the ghost fluid method (GFM), has been developed by Fedkiw

et al. (1999). The formalism respects jump discontinuities across the interface, and avoids an inter-
face thickness. Discretization of discontinuous variables is more accurate, and spurious currents
in the velocity field are thus much lower than with CSF methods. We have used this procedure to
discretize all discontinuous variables, namely density, viscosity, pressure and viscous tensors
(Kang et al., 2000; Tanguy, 2004).

In the GFM methods, ghost cells are defined on each side of the interface (Liu et al., 2000;
Kang et al., 2000) and appropriate schemes are applied for jump conditions. As defined above,
the interface is characterized through the distance function, and jump conditions are extrapolated
on some nodes on each side of the interface. Following the jump conditions, the discontinued
functions are extended continuously and then derivatives are estimated.

In order to explain the process in a very simple case, let us consider variable f which is discon-
tinuous across the interface in the X domain such that the jump of f is [f]C = aC (Fig. 2).

To solve the simple equation d2f/dx2 = 0, specific discretization is applied depending on the
interface location. When the interface is localized between xi and xi+1, f derivatives at i and
i + 1 nodes are expressed by:
[f]

i_1f

i+2f
i+1f

if

g+
if

g
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Fig. 2. Ghost values due to jump in variable f.
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ðf þ
iþ1 � f �

i Þ
dx

� ðf �
i � f �

i�1Þ
dx

dx
¼ 0 ð15Þ

ðf þ
iþ2 � f þ

iþ1Þ
dx

� ðf þ
iþ1 � f �

i Þ
dx

dx
¼ 0 ð16Þ
Due to the jump of f between i and i + 1, ghost values for f þ
iþ1 in Eq. (15) ðf g�

iþ1Þ and f �
i in Eq. (16)

ðf gþ
i Þ are defined by:
f g�
iþ1 ¼ f þ

iþ1 � aC

f gþ
i ¼ f �

i þ aC
ð17Þ
The finite difference form of d2f/dx2 = 0 is thus:
ðfiþ1 � 2f i þ fi�1Þ
dx2

¼ 0 when no jump occurs between i and iþ 1 ð18Þ
In cells that are crossed by the interface equation reads:
ðfiþ1 � 2f i þ fi�1Þ
dx2

¼ aC
dx2

ð19Þ
The above scheme can be applied for any kind of discontinuities, assuming that the interface can
be localized inside a grid mesh and that the jump of the discontinuous variables is known. More
details can be found in Liu et al. (2000) on implementing the ghost fluid method to solve the
Poisson equation with discontinuous coefficients and obtain solution with jump condition. The
method has been used to compute two-phase flows, and it compares favorably with the Continuum
Surface Method in both 2D and 3D cases. It is clearly shown that spurious currents are 103 times
lower with GFM than with CSF for a static drop (Tanguy, 2004). Moreover in our simulations we
find that very thin interfacial structures are better resolved when using the ghost fluid method. All
the simulations presented here are thus carried out with the ghost fluid method. Numerical codes
have been developed for 2D, 2D-axi and 3D geometries, and MPI parallelization is used.
3. Results for head-on droplet collision

As previously mentioned, mass conservation might not be satisfied in level set methods and we
thus evaluated mass loss during all simulations to check that it was negligible (<1%). Moreover we
carried out convergence tests to check that coalescence and break-up of interface was independent
of the mesh size. Initially, droplet velocity was imposed to fit the given Weber number. The gas
phase is air and the liquid phase is ethanol or water. The physical properties of both phases
are given in Table 1.

3.1. Coalescence after minor deformation

The ethanol droplet diameter is 200 lm and the initial relative velocity is 0.4 ms�1. The Weber
number is thus equal to 2.2 and the Ohnesorge number is 0.014. The grid is 500 lm · 1500 lm



Table 1
Physical properties of both phases

r (kg s�2) q (kg m�3) l (kg m�1 s�1)

Air – 1.226 1.78 · 10�5

Water 0.072 1000 0.001137
Ethanol 0.02275 791 0.0012

 t=0. ms t=0.6 ms t=1.2 ms t=1.8 ms t=2.4 ms t=3.0 ms t=3.6 ms t=4.2 ms

Fig. 3. 200 lm ethanol droplet collision for We = 2.2, Oh = 0.014.

S. Tanguy, A. Berlemont / International Journal of Multiphase Flow 31 (2005) 1015–1035 1023
square and two different grid sizes are used, namely 40 · 120 and 80 · 240 in order to ensure that
the grid is independent of topological changes. The time step is determined from CFL conditions
as proposed by Fedkiw et al. (1999).

Fig. 3 presents the temporal evolution of the interface for the 80 · 240 grid and the time step
between two drawings is 0.6 ms. We observe the coalescence of the two droplets and the resulting
drop then starts to oscillate slightly but the momentum energy is too low to produce any break-up
in the process. Two interface profiles are drawn in Fig. 4 for the two different mesh sizes. We
clearly observe that the results are almost identical and space convergence is reached. Moreover
mass loss has been evaluated and is less than 0.09% on the 80 · 240 grid.

3.2. Coalescence after substantial deformation

The above conditions are kept, but the relative velocity is set to 1.1 ms�1 and the Weber num-
ber is equal to 16.8. Grid sizes are 60 · 180 and 90 · 270 nodes respectively.

When compared to the previous case, a quite similar behavior is observed (Fig. 5), but the oscil-
lations of the resulting droplet are much greater. As expected, the drop behavior is driven by sur-
face tension forces. Due to the high curvature at impact, the drop is elongated in the
perpendicular direction of collision and when it reaches its maximum elongation, the surface ten-
sion tends to draw back the droplet to its more stable shape and oscillations thus occur around the
spherical shape. However, the initial kinetic energy of the droplets is still not enough to induce
break up of the cylinder shape observed on the fifth drawing.



 
t=0.8 ms t=4.2 ms

Fig. 4. Interface profiles for 40 · 120 (red) and 80 · 240 (blue) grids. (For interpretation of the references in colour in
this figure legend, the reader is referred to the web version of this article.)

t=0. ms t=0.6 ms t=1.2 ms t=1.8 ms t=2.4 ms t=3.0 ms t=3.6 ms t=4.2 ms

Fig. 5. 200 lm ethanol droplet collision for We = 16.8, Oh = 0.014.
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Three interface profiles are presented in Fig. 6 for the two grid meshes. A very slight difference
is observed on the first profile for the thin membrane, but without any influence on the coales-
cence process observed on the next profiles. Mass loss on the 90 · 270 grid is less than 0.13%. Note
that symmetry of the collision process is kept all along the collision and it will now be introduced
as the bottom axis boundary condition for head-on collisions of identical droplets.



t=0.96 ms t=2.00 ms t=3.36 ms

Fig. 6. Interface profiles for 60 · 180 (red) and 90 · 270 (blue) grids. (For interpretation of the references in colour in
this figure legend, the reader is referred to the web version of this article.)
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3.3. Coalescence followed by separation for head-on collisions

We increase the Weber number up to 61, through an increase of the relative velocity which is
equal to 2.1 ms�1. The grid size is 500 lm · 1500 lm and grid resolution is 90 · 270 and
180 · 540.

Fig. 7 shows the interface behavior with a 0.25 ms time step between each plot. We recall that
the symmetry condition is now applied on the axis.

We first observe the coalescence of the two droplets (image 2) and the resulting single drop then
stretches into a ring shape with a thin membrane (image 4). Under surface tension forces, the ring
is then attracted to its center (image 5) and the internal motion of the liquid leads to a cylinder
(image 8). Due to the fairly high initial kinetic energy of the droplets, the cylinder is then lengthens
(image 11) until break-up occurs (image 12). A satellite appears and the three resulting droplets
then slightly oscillate before recovering a spherical shape.

In Fig. 8 we plot the interface profiles just before and after the break-up for the two grid sizes.
The figure clearly shows that the grid resolution here is sufficient, as the topological change is al-
most the same for the two grid meshes. Mass loss on the 90 · 270 grid is less than 0.71%.
4. Comparisons with experiments

The results presented in the previous section are in good agreement with experimental observa-
tions from Ashgriz and Poo (1990) on water droplets and Estrade (1998) on ethanol droplets.
They state that the coalescence regime is obtained for We < 19 (Ashgriz and Poo) or We < 31



t=0.25 ms t=0. ms t=0.5 ms t=0.75 ms t=1. ms t=1.25 ms t=1.5 ms 1.75 ms 

t=2.25 ms t=2. ms t=2.5 ms t=2.75 ms t=3. ms t=3.25 ms t=3.5 ms 3.75 ms 

Fig. 7. 200 lm ethanol droplet collision for We = 61, Oh = 0.014.

1026 S. Tanguy, A. Berlemont / International Journal of Multiphase Flow 31 (2005) 1015–1035
(Estrade). They also observed that for We = 61 the collision process leads to the break-up of the
resulting droplet with the formation of one satellite. The aim of the present section is to compare
our simulations with experimental results, but a quantitative comparison remains quite difficult
due to the many problems encountered in experimental studies. One reason is the lack of precise
experimental conditions, where the Weber number is known but where we have no reliable infor-
mation on droplet diameters or velocities (the Reynolds and Ohnesorge numbers are unknown).
In our simulation we thus try to be as close as possible to experiments by taking the given Weber
number and guessing the droplet diameter from the injector nozzle size. Another problem comes
from some uncertainties on measurements, such as the impact parameter (for example close to 0,
but not a perfect head-on collision) or physical properties of the liquid, namely the surface tension
which is very sensitive to the purity of the water. Moreover, no time scale on the image sequences
is available. However qualitative comparisons can be carried out, mainly with Ashgriz and Poo�s
(1990) results, as they provide good quality pictures for the different collision processes. We thus
present comparisons of droplet shapes in the collision process between our simulation and
Ashgriz and Poo (1990) results.



t=2.7 ms t=2.75 ms 

Fig. 8. Interface profiles for 90 · 270 (red) and 180 · 540 (blue) grid. (For interpretation of the references in colour in
this figure legend, the reader is referred to the web version of this article.)

S. Tanguy, A. Berlemont / International Journal of Multiphase Flow 31 (2005) 1015–1035 1027
4.1. Coalescence followed by separation for head-on collisions

Collision has been observed by Ashgriz and Poo for two identical water droplets, with a Weber
number equal to 23, and impact parameter nearly equal to zero (0.05). Simulation results are pre-
sented for water droplets, with the same Weber number, and with an impact parameter equal to 0,
a droplet radius of 400 lm, and a droplet relative velocity of 1.44 ms�1. The grid size is 60 · 120 in
the 2D-axi configuration.

Comparisons between our results and experimental visualization are shown in Fig. 9a and b.
The qualitative agreement between simulation and experiments in the different pictures is quite

good. The final state is well predicted (two droplets without satellites) and moreover, the liquid
phase behavior during the collision process is very similar in both image sequences.

4.2. Coalescence followed by separation with formation of one satellite for head-on collisions

In the same conditions, Ashgriz and Poo first increased the Weber number up to 40. We thus
kept the same simulation conditions, and only changed the droplet�s relative velocity to 1.9 ms�1

to fit the Weber number. The grid size is also the same, 80 · 160.
We can also observe in Fig. 10a and b the good qualitative agreement in the image sequences.

However, it appears that the satellite is slightly smaller in the simulation than in the experiments
but, as previously mentioned, precise experimental data are required to discuss the results
further.



Fig. 9. (a) Head-on collision, We = 23, from Ashgriz and Poo (1990). (b) Head-on collision, We = 23, Oh = 0.0047,
our simulation.
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4.3. Head-on collision for two droplets with different sizes

In order to confirm the ability of our code to describe droplet collisions, the third case concerns
the head-on collision of two droplets of unequal diameters. The experimental conditions given by
Ashgriz and Poo are the Weber number (We = 56), the droplet radius ratio (0.5) and the impact
parameter (0). We fixed the largest radius at 400 lm, and the smallest radius at 200 lm; the
relative velocity for We = 56 is thus equal to 3.175 ms�1. The grid size is 60 · 240.

As can be observed in Fig. 11a and b the agreement between the experimental pictures and the
simulation results is very impressive. The shape evolution of the liquid phase is quite identical on
both image sequences, and the last images of the two resulting droplets prove the quality of the
whole collision process simulation.

4.4. Off-center collision

In order to check the method in 3D configurations, collision between two droplets with a non-
zero impact parameter has been studied. We chose ethanol droplets, with a radius of 100 lm, im-
pact parameter of 0.5 and relative velocity of 2.94 ms�1; this gives a Weber number equal to 60.
The grid size is 64 · 128 · 256 and the symmetry condition is imposed on the parallel direction of
the droplet velocity vectors. MPI parallelization is used and calculations are carried out on eight
processors on an IBM 1600 cluster.



Fig. 10. (a) Head-on collision, We = 40, from Ashgriz and Poo (1990). (b) Head-on collision, We = 40, Oh = 0.0047,
our simulation.

Fig. 11. (a) Head-on collision, We = 56, radius ratio 0.5 from Ashgriz and Poo. (b) Head-on collision, We = 56,
Oh = 0.0047, radius ratio 0.5, our simulation.
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Simulation results are presented in Fig. 12a. The collision process leads to coalescence followed
by separation with the formation of two satellites. The chosen initial configuration is in the tran-
sition regime between separation with the formation of one satellite and separation with the
formation of three satellites, as observed by Estrade (1998).

Going back to Ashgriz and Poo, the authors showed a collision with very similar behavior as
shown in Fig. 12b, but with a slightly different configuration, namely water droplets,We = 83 and
impact parameter is 0.43. A difference appears on image 2 in Fig. 12a and b where the thin mem-
brane is broken in the simulation but seems to experimentally remain during the collision.
Fig. 12. (a) 3D simulation, ethanol droplet, We = 60, Oh = 0.02, impact parameter 0.5. (b) Water droplet, We = 83,
impact parameter 0.43 from Ashgriz and Poo (1990).



Fig. 13. Thin membrane break in 3D simulation.
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The numerical description of very thin liquid layers in the collision process is a difficult problem
to handle. As shown in Fig. 13 the thin membrane which is observed in the 3D simulation first
breaks near the liquid ring, and then the bridge on the center of the liquid shape is elongated until
it also breaks and a small droplet appears in the center. The ring is then stretched until its two
sides collapse on the vertical axis and the small droplet is captured and merges with the whole
liquid.

Ashgriz and Poo never seem to observe this behavior. We can assume that the break-up in the
interface topology is induced by under-resolved numerical simulation of the very thin interface.
However, while it remains quite impossible to check the spatial convergence of the results in
3D configurations, such behavior has also been observed in 2D simulations, namely for
We = 23 in the above results. Refining the grid can, in some cases, allow the interface motion
to be described without any rupture, but we found some cases where the membrane break-up oc-
curs at the same time on the same location whatever the grid size we used (the finest grid mesh was
less than 2 lm). We observed that these thin membranes rupture during head-on droplet collisions
for quite small Weber numbers. Fig. 14 can help to propose an explanation for this behavior in the
simulations.

For a small Weber number (We = 23, blue curve1) the kinetic energy of the liquid phase is not
sufficient to push a large amount of liquid away with the ring, and generates a tore with a very thin
inside membrane. Then the ring tends to recover its natural form under surface tension forces,
namely a cylindrical tore and this induces the rupture of the membrane on the inside edge of
the ring before it contracts.

For a higher Weber number (We = 125, red curve), the resulting liquid sheet is wider and thin-
ner and the liquid then goes back towards the center of the ring without any rupture of the
membrane.

Note that the surface energy of the inside membrane is negligible due to its curvature which
tends towards 0. Moreover, the rupture of the very thin membrane does not induce much differ-
ence in the qualitative characteristics of the collision. There is still a possibility that this rupture
might disappear if by the grid is refined; and automatic mesh refinement (AMR) would be of
interest to help in deciding whether the membrane ruptures or not.
1 For interpretation of colour in Fig. 14, the reader is referred to the web version of this article.



Fig. 14. Thin layer during head-on droplet collision.
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4.5. Quantitative comparison

As previously mentioned, quantitative comparisons can be biased by a lack of experimental
operating conditions or detailed measurement data. However experimental studies (Estrade,
1998; Qian and Law, 1997) provide the critical Weber versus Ohnesorge number for the transition
between coalescence regime and separation regime for droplet head-on collision (regimes (c) and
(d) in Fig. 1). Fig. 15 compares our results with Qian and Law (1997) and Estrade (1998) exper-
imental correlations, and Rieber and Frohn (1995) simulations. The agreement between our sim-
ulations and experimental data is very satisfactory and confirms that level set method with ghost
fluid approach are accurate tools numerical simulations of droplet collisions.
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Fig. 15. Comparison between numerical and experimental results for the transition between coalescence and separation
in (Oh,We) space for droplet head-on collision.
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5. Conclusion

Level set methods are based on defining a continuous function such that its zero level curve is
the interface. That function is initialized as the signed distance to the interface in the computation
field. Solving a convection equation allows the interface displacements in a given velocity field to
be followed. One advantage of the level set method is its ability to represent topological changes,
both in 2D or 3D geometry, quite naturally. Moreover, the geometrical properties of the interface,
such as the normal vector or curvature, are easily obtained through the level set function gradient.
To avoid spreading and stretching of the level set, a re-distancing algorithm is applied to ensure
that the function remains the algebraic distance to the interface.

The level set method is coupled with a projection method for the direct numerical simulation of
the incompressible Navier–Stokes. Spatial derivatives are estimated with a second order central
scheme, but convective terms are approximated by fifsth order WENO scheme discretization in
order to obtain robust behavior of the solution. Temporal derivatives are approximated with at
least a second order Runge–Kutta scheme or an Adams Bashforth formulation. The linear system
deduced from the Poisson equation is solved with a multigrid algorithm for preconditioning the
conjugate gradient method.

Two different approaches can be used to handle interface discontinuities, namely the ghost fluid
method and the continuum surface force (delta formulation). In delta formulation an interface
smoothing is induced on two or three grid nodes, and the ghost fluid method takes into account
the discontinuities through variable continuous extension on both side of the interface. The ghost
fluid method is preferred here for drop collision simulations. All the comparisons with experimen-
tal studies are in very good agreement and some of them are very impressive. However, further
developments are required. The main drawback of the method is possible mass loss for the
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under-resolved zone of the computational domain. We have checked in the results presented that
mass conservation is better than 1% by refining the grid. It clearly appears that grid size limita-
tions do not allow the same strategy for 3D simulations. A promising development is the coupling
of the ghost fluid and VOF/level set methods (Sussman and Puckett, 2000), in order to benefit
from both the precise interface characterization of the GFM and from the mass conservation
of VOF.
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Écoulements Diphasiques, 18–21 Novembre 1996, INRIA—Rocquencourt France.
Sussman, M., Puckett, E.G., 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric

incompressible two-phase flows. J. Comput. Phys. 162, 301–337.



S. Tanguy, A. Berlemont / International Journal of Multiphase Flow 31 (2005) 1015–1035 1035
Sussman, M., Fatemi, E., Smereka, P., Osher, S., 1997. An improved level set method for incompressible two-phase.
Comput. Fluids 27.
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